33,020 research outputs found

    Strengthening HIV Knowledge and Awareness among Undergraduate Students at Historically Black Colleges and Universities

    Full text link
    Objective: We describe baseline HIV knowledge among students at historically black colleges and universities (HBCUs) to inform and strengthen HIV education efforts at HBCUs. Methods: We surveyed 1,230 African American HBCU students from 24 HBCUs; 1,051 responses (85.4 %) were analyzable. Results: Although general HIV knowledge was high among respondents (95% of students correctly responded that having sex without a condom constituted unsafe sex), knowledge deficits were noted (only 25% of students reported that multiple sex partners is a form of unsafe sex, while 25% of students reported that withdrawal of the penis before ejaculation reduced HIV risk). Conclusions: Misperceptions about HIV have implications for unintended sexual transmission of HIV. As African American young adults are disproportionately affected by HIV, strengthening HIV prevention efforts at HBCUs may include correcting misperceptions to reduce sexual risk and decrease HIV-related health disparities among young people

    The 10 to the 8th power bit solid state spacecraft data recorder

    Get PDF
    The results are summarized of a program to demonstrate the feasibility of Bubble Domain Memory Technology as a mass memory medium for spacecraft applications. The design, fabrication and test of a partially populated 10 to the 8th power Bit Data Recorder using 100 Kbit serial bubble memory chips is described. Design tradeoffs, design approach and performance are discussed. This effort resulted in a 10 to the 8th power bit recorder with a volume of 858.6 cu in and a weight of 47.2 pounds. The recorder is plug reconfigurable, having the capability of operating as one, two or four independent serial channel recorders or as a single sixteen bit byte parallel input recorder. Data rates up to 1.2 Mb/s in a serial mode and 2.4 Mb/s in a parallel mode may be supported. Fabrication and test of the recorder demonstrated the basic feasibility of Bubble Domain Memory technology for such applications. Test results indicate the need for improvement in memory element operating temperature range and detector performance

    Chimera States for Coupled Oscillators

    Full text link
    Arrays of identical oscillators can display a remarkable spatiotemporal pattern in which phase-locked oscillators coexist with drifting ones. Discovered two years ago, such "chimera states" are believed to be impossible for locally or globally coupled systems; they are peculiar to the intermediate case of nonlocal coupling. Here we present an exact solution for this state, for a ring of phase oscillators coupled by a cosine kernel. We show that the stable chimera state bifurcates from a spatially modulated drift state, and dies in a saddle-node bifurcation with an unstable chimera.Comment: 4 pages, 4 figure

    Excitability in a nonlinear magnetoacoustic resonator

    Full text link
    We report a nonlinear acoustic system displaying excitability. The considered system is a magnetostrictive material where acoustic waves are parametrically generated. For a set of parameters, the system presents homoclinic and heteroclinic dynamics, whose boundaries define a excitability domain. The excitable behaviour is characterized by analyzing the response of the system to different external stimuli. Single spiking and bursting regimes have been identified.Comment: 4 pages, 5 figure

    Effects of non-resonant interaction in ensembles of phase oscillators

    Full text link
    We consider general properties of groups of interacting oscillators, for which the natural frequencies are not in resonance. Such groups interact via non-oscillating collective variables like the amplitudes of the order parameters defined for each group. We treat the phase dynamics of the groups using the Ott-Antonsen ansatz and reduce it to a system of coupled equations for the order parameters. We describe different regimes of co-synchrony in the groups. For a large number of groups, heteroclinic cycles, corresponding to a sequental synchronous activity of groups, and chaotic states, where the order parameters oscillate irregularly, are possible.Comment: 21 pages, 7 fig

    Ibrutinib inhibits SDF1/CXCR4 mediated migration in AML

    Get PDF
    Pharmacological targeting of BTK using ibrutinib has recently shown encouraging clinical activity in a range of lymphoid malignancies. Recently we reported that ibrutinib inhibits human acute myeloid leukemia (AML) blast proliferation and leukemic cell adhesion to the surrounding bone marrow stroma cells. Here we report that in human AML ibrutinib, in addition, functions to inhibit SDF1/CXCR4-mediated AML migration at concentrations achievable in vivo. It has previously been shown that SDF1/CXCR4-induced migration is dependent on activation of downstream BTK in chronic lymphocytic leukaemia (CLL) and multiple myeloma. Here we show that SDF-1 induces BTK phosphorylation and downstream MAPK signalling in primary AML blast. Furthermore, we show that ibrutinib can inhibit SDF1-induced AKT and MAPK activation. These results reported here provide a molecular mechanistic rationale for clinically evaluating BTK inhibition in AML patients and suggests that in some AML patients the blasts count may initially rise in response to ibrutinib therapy, analgous to similar clinical observations in CLL

    Modelling spatially regulated B-catenin dynamics & invasion in intestinal crypts

    Get PDF
    Experimental data (e.g., genetic lineage and cell population studies) on intestinal crypts reveal that regulatory features of crypt behavior, such as control via morphogen gradients, are remarkably well conserved among numerous organisms (e.g., from mouse and rat to human) and throughout the different regions of the small and large intestines. In this article, we construct a partial differential equation model of a single colonic crypt that describes the spatial distribution of Wnt pathway proteins along the crypt axis. The novelty of our continuum model is that it is based upon assumptions that can be directly related to processes at the cellular and subcellular scales. We use the model to predict how the distributions of Wnt pathway proteins are affected by mutations. The model is then extended to investigate how mutant cell populations can invade neighboring crypts. The model simulations suggest that cell crowding caused by increased proliferation and decreased cell loss may be sufficient for a mutant cell population to colonize a neighboring healthy crypt

    On The Nature of Variations in the Measured Star Formation Efficiency of Molecular Clouds

    Get PDF
    Measurements of the star formation efficiency (SFE) of giant molecular clouds (GMCs) in the Milky Way generally show a large scatter, which could be intrinsic or observational. We use magnetohydrodynamic simulations of GMCs (including feedback) to forward-model the relationship between the true GMC SFE and observational proxies. We show that individual GMCs trace broad ranges of observed SFE throughout collapse, star formation, and disruption. Low measured SFEs (<<1%) are "real" but correspond to early stages, the true "per-freefall" SFE where most stars actually form can be much larger. Very high (>>10%) values are often artificially enhanced by rapid gas dispersal. Simulations including stellar feedback reproduce observed GMC-scale SFEs, but simulations without feedback produce 20x larger SFEs. Radiative feedback dominates among mechanisms simulated. An anticorrelation of SFE with cloud mass is shown to be an observational artifact. We also explore individual dense "clumps" within GMCs and show that (with feedback) their bulk properties agree well with observations. Predicted SFEs within the dense clumps are ~2x larger than observed, possibly indicating physics other than feedback from massive (main sequence) stars is needed to regulate their collapse.Comment: Fixed typo in the arXiv abstrac
    • …
    corecore